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Asymmetric induction in metal-catalyzed olefin oxidations is

a:R=0Me
usually explained by a combination of steric and electronic b: R = OEt
interactions between substrate and catalyst in the transition c:R=O0Bn
state! 3 Various chiral oxo transfer catalysts based on Mn(s&ién) d:R=0ONp
and Mn- or Fe—porphyrin complex€s® have been designed e : R = OPhp-NO,
in such a way that steric interaction between the substituted olefin f : R = OPhm-NO,
and the dissymmetric ligand is maximized in a side-on approach g : R = O(1S)-endo-bornyl
transition staté! but electronic factors have been shown to h:R=0Bu'
influence also the enantioselectivity. We have prepared an i : R=N(Me)Ph
extensive series dD,-symmetric chiroporphyridg 16 1a—I (M j : R=N(Et)Ph
= 2H) derived from enantiopure biocartol estétéand amides? k : R = N(Cy)C(O)NH(Cy)
in which potentially stereogenic groups sit on the porphyrin ring I : R=NH(Cy)

in the vicinity of the metal-binding site, and we have screened
their manganese complex&a—| (M = MnCl) as possible
asymmetric epoxidation catalysts. We have also solved the crystal - condensation of pyrrole with the appropriately substituted
structures of the nickel derivativeiab,d—g,ik (M = Ni). We  piocartol ester or amide followed by aromatization with DDQ
report that high levels of stereoinduction can be obtained with afforded the chiroporphyrirka—| atroposelectively as the desired
the most sterically crowded catalysts, and that the enantioselec-4844 atropisomers. The X-ray structdef the Ni complex3g
tivity of 1,2-dihydronaphthalene epoxidation is correlated to the gerived from the (§)-endebornyl ester (Figure 1) illustrates its
degree of nonplanar distortion of the porphyrin. conformational flexibility. Among the four ester groups in the
- - — - - stableZ conformatior?! two have their carbonyl oxygen atom
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954 plex3i (Figure 1 and graphical abstract) sh Il f d
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Figure 2. Plot of the enantiomer ratier of the 1S 2R epoxide obtained

in the asymmetric epoxidation of 1,2-dihydronaphthalene by catalysts
2a—1| as a function of the NMR chemical shift (ppm) of the central NH
protons of chiroporphyrinda—I in CDCl: 6 —1.66 (La); —1.60 (Lb);
—1.58 (Lh); —1.51 (lc); —1.50 (if); —1.41 (le); —1.39 (1k); —1.36 (Ld);
—1.29 (i); —1.27 @g); —1.21 @j); —1.15 (1I).

likely that the molecular volume of the potentially stereogenic
groups is the actual origin of the observed stereoinduéfittris

thus apparent that in these catalytic systems stereoinduction is
governed by steric exclusion of the phenyl substituent of the 1,2-
dihydronaphthalene substrate, a result which is consistent with a
concerted oxygen atom transfer mechanism in a side-on approach
transition state. We note, however, that #es for other olefin
substrates such as indene {32%) and 2-vinylnaphthalene (5
30%) are only low to moderate and do not reflect a single
stereodirecting mechanism. Efforts are currently in progress
toward a better understanding of the determinants of enantiose-
lectivity, and particularly of the effect of porphyrin ruffling using

UV —visible absorption spectroscopy, resonance Raman spectros-
copy, and molecular mechanics calculatiéhs.
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on steric grounds for the side-on approach of the substrate
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enantioselectivity correlation presented in Figure 2, in which the data on3gand3i. An X-ray crystallographic file, in CIF format. This
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